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The problem of determining the profile of a plane diffuser (of given upstream width 
and length) that provides the maximum static pressure rise is solved. Two- 
dimensional, incompressible, laminar flow governed by the steady-state Navier- 
Stokes equations is assumed through the diffuser. Recent advances in 
computational resources and algorithms have made it possible to solve the ‘direct’ 
problem of determining such a flow through a body of known geometry. In this 
paper, a set of ‘adjoint’ equations is obtained, the solution to which permits the 
calculation of the direction and relative magnitude of change in the diffuser profile 
that leads to a higher pressure rise. The direct as well as the adjoint set of partial 
differential equations are obtained for Dirichlet-type inflow and outflow conditions. 
Repeatedly modifying the diffuser geometry with each solution to these two sets of 
equations with the above boundary conditions would in principle lead to a diffuser 
with the maximum static pressure rise, also called the optimum diffuser. The 
optimality condition, that the shear stress all along the wall must vanish for the 
optimum diffuser, is also recovered from the analysis. It is postulated that the 
adjoint set of equations continues to hold even if the computationally inconvenient 
Dirichlet-type outflow boundary condition is replaced by Neumann-type conditions. 
It is shown that numerical solutions obtained in this fashion do satisfy the optimality 
condition. 

1. Introduction 
A shape optimization problem is one in which an objective function defined on a 

domain and/or on its boundary through the solution of a boundary-value problem, 
is minimized (or maximized) with respect to the variation of the domain. One 
problem of this nature is to determine the shape of a body (of given volume) which 
has minimum drag when moved a t  constant speed in a viscous fluid. This problem 
has been addressed, among others by Tuck (1968), Watson (1971) and Pironneau 
(1973, 1974). The earlier formulations of the problem by Tuck (1968) and Watson 
(1971) were for a body in Stokes flow. The former led to a numerically intractable 
integral equation and the later to an estimate of the upper bound on the minimum 
possible drag. Pironneau (1973), aided by earlier works of Lions (1968) and Lions & 
Magenes (1967) addressed the same minimum drag problem in Stokes flow for a 
three-dimensional unit-volume body. It was shown that at optimality the normal 
derivative of the velocity is constant along the boundary of the body. In  addition it 
was also shown that the general shape of the body is similar to a prolate spheroid 
with a conical front end and rear ends of angle 120’. However, owing to the lack of 
a numerical Stokes flow solver, a complete body profile could not be obtained. 

In a subsequent study, Pironneau (1974) derived the change in energy dissipation 
due to a small hump on a body in uniform, steady, laminar flow. Using the above 
result in conjunction with variational methods of optimal control, ‘necessary 
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optimality conditions ’ for four minimum-drag problems were obtained. These 
conditions lead to a set of equations for an additional set of variables called the ‘co- 
state’ or the ‘adjoint’ variables as opposed to the ‘direct’ variables which are the 
unknown velocities. The direct variables appear as parameters in the adjoint 
equations, and hence the direct as well as the adjoint equations together form a 
coupled set of equations. Because of the cornplcxity of the equations a possible way 
to solve them is by an iterative numerical procedure. At the time Pironneau (1974) 
was unable to carry out such a numerical integration. Instead, however, using a 
boundary-layer assumption he was able to prove that a two-dimensional unit-area 
body with the smallest drag has a wedge-shaped front end. In  a subsequent work 
Glowinski &, Pironneau ( 1975) prescntcd numerical computations of the minimum- 
drag profile of a two-dimensional body in laminar flow, although with a Reynolds 
number large enough (between 1000 and 100000) to permit a boundary-layer 
approximation. They found that the optimum profile is long and thin with the front 
end being shaped like a wedge of angle 90” and the rear end like a cusp. While they 
were unable to compute the detailed body profile, this study to the best of our 
knowledge comes closest to finding a numerical solution to an optimum design 
problem in a flow governed by the laminar Navier-Stokes equations. The present 
study belongs to this class in its theoretical approach with particular emphasis on 
computation of optimum profiles in the absence of simplifying assumptions such as 
Stokes flow or thin boundary layers. 

Another related class of optimum design problems is the question of determining 
the profile of a two-dimensional body that will attain a desired surface pressure 
distribution. The body is assumed to  be in otherwise uniform flow. The designer 
usually has a better understanding of how the performance is related to  the pressure 
distribution than the relationship between the profile and the performance. In a 
recent survey paper, Jameson (1988) suggests that the design problem be treated as 
a control problem in which the control is the profile of the boundary. He also provides 
a comprehensive summary of the earlier related studies in this direction. 

In  his pioneering contribution Lighthill (1945) solved the problem for in- 
compressible potential flow past a body by conformally mapping it to a unit circle. 
Similar approaches were used by McFadden (1979) and Garabedian & McFadden 
(1982) for two- and three-dimensional compressible flow. An alternative formulation 
of the potential flow design problem is to convert the specified pressure distribution 
into a corresponding surface speed that can be integrated to obtain the surface 
potential. Using this potential as the Dirichlet boundary condition to the potential 
flow equations the profile change can be determined from the computed normal 
velocity component at the surface. This approach was first suggested by Tranen 
(1974) and was subsequently used for three-dimensional flow by Henne (1980). 
Recently, Volpe & Melnik (1986) have demonstrated how to accommodate 
constraints on the permitted pressure distribution. The problem of design of shock- 
free transonic airfoils was addressed by Garabedian & Korn (1971) by using the 
method of complex characteristics to solve the equations in the hodograph plane. 

In  a significant step towards addressing real flows Giles, Drela & Thompkins (1985) 
addressed the problem of shape design for flows governed by the two-dimensional 
Euler equations. They write the two-dimensional Euler equations in a streamline 
coordinate system and for fixed pressure distribution obtain a Newton solution for 
the unknown surface coordinates. 

Hicks & Henne (1979) have explored the possibility of meeting desired design 
objectives by using constrained optimization. The configuration is specified by a set 
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FIGURE 1. Schematic diagram of a plane diffuser. Flow enters at upstream boundary r, and exits 
a t  the downstream boundary r,. The wall to  be shaped is r, and the symmetry line is r,. 

of parameters, flow is solved numerically by a suitable method. The optimization 
method then selects values of these parameters that maximize some criterion of 
merit. According to Jameson (1988) this method becomes extremely expensive as the 
number of parameters is increased, and its successful application in practice depends 
heavily on the choice of a parametric representation of the configuration. 

In the present study optimum design of an internal flow component such as a 
diffuser in laminar flow is considered. The problem of determining the profile of a 
plane diffuser (of say, given upstream width and length) that provides the maximum 
static pressure rise is formulated using a variational method derived from optimal 
control theory. With careful consideration of the numerical stability of the adjoint 
equations we have been able to demonstrate the feasibility of optimum design in the 
context of laminar Navier-Stokes equations without the additional boundary-layer 
assumption. 

2. Statement of the problem 
Consider a plane diffuser, as shown in figure 1,  of given upstream width W, and 

given length L with incompressible, laminar flow through it. The flow is governed by 
the incompressible, steady forms of the Navier-Stokes and continuity equations. 
These are 

1 ( 1 )  
U$,$  = 0, 

ujui,j = -~?+vui, j j9 J 
where p* = p / p .  Here u i ,p ,p ,  and v are the velocity components, pressure, density 
and kinematic viscosity respectively. 

A no-slip condition is imposed on the bounding wall. Dirichlet-type boundary 
conditions are assumed a t  the entrance and exit ; specifically, it is assumed that the 
streamwise velocity component at  the entrance and exit is specified and the 
transverse velocity component a t  the entrance and exit is assumed to be zero. 
Symmetry conditions are assumed at the centreline. Boundary conditions a t  the 
entrance and exit then are 

where f(y) and g(y) are assumed to be specified functions. All velocities and lengths 
are scaled using the average entrance velocity V and the diffuser entrance width 
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W, throughout the paper. Hence thc Reynolds number for the flow through the diffuser 
is defined as Re = (VW,)/u. 

An appropriate quantity to be minimized or maximized, called the objective 
function is chosen to formulate the variational problem. One parameter that 
characterizes the diffuser performance is the static pressure rise through the diffuser. 
The optimum diffuser profile should be such as to maximize the value of this 
parameter for a given upstream width and length. Since pressure may vary across the 
diffuser inlet and exit regions i t  was decided to choose the change in the flow- 
weighted integral (over the exit and inlet cross-sectional areas) of the static pressure 
rise as the objective function. This quantity is given by 

n 

J (  r,) = J p*u, n, ds + 
r1 

(3) 

where n, is the ith component of the unit normal vector and r, is the portion of the 
diffuser wall that is to be shaped. The goal then is to  determine the diffuser profile 
that maximizes the above function. The normalized diffuser length, L/W, (henceforth 
simply called the length) is kept constant. The normalized exit width W,/W, 
(henceforth simply called the exit width) is left arbitrary, and its actual value for the 
optimum diffuser is part of the solution to the problem and is determined along with 
the rest of the profile. Since the only mechanism for total pressure drop in the diffuser 
is viscous dissipation, the optimum profile is also the profile for which the viscous 
dissipation is a minimum. 

3. Mathematical formulation 
In  this section, the variation of the objective function with respect to the variation 

of the boundary is obtained by means of a perturbation type of analysis. This 
analysis follows from arguments not unlike those used for optimum design in 
potential flow, in an earlier paper by Cabuk & Modi (1990). 

First the variation of the solution of the direct problem due to  boundary variation 
is obtained. Let p(s)  be an arbitrary function of arclength s, defined on r,, and let 
E be a positive number. Here r, is the part of the boundary that is to be shaped. The 
whole boundary, including the wall of the diffuser, the centreline and the inlet and 
exit areas, is denoted by r and the domain enclosed by r is denoted by SZ. Let each 
point on r, be moved by ep(s) along the outer normal direction. The curve 
constructed in this way is denoted by rM.€ and the new domain is denoted by Q, as 
shown in figure 1.  Let (u;,pe) be the solution of (1)  in the new domain a,. Let (&T) 

be defined as follows: 

(4) 

(5 )  

'"i #i = lim e-I [u; - u,] 

7~ = lims-'W-p*] EQ. 

E'O 

C+O 

Then (u:,pc) can be written as 

u; = Ui+",, p" = p*+en 

Since both (uq, p") and (u,, p*)  satisfy the Navier-Stokes equations, it can be shown 
that (+,, n) satisfy the following set of equations : 
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In  a similar way it can be shown that on the fixed portions of the boundary 

4, = 0 on ( r - r M )  ( 7 )  
since both u: and ui satisfy the same boundary conditions. 

The next step is to derive the conditions satisfied by q5i on r,. Consider a point P 
on r,, and a corresponding point P, on r,,& such that P, lies on the outward normal 
n, as shown in figure 1. Assume that ep(s) is positive. A Taylor series expansion of u; 
about the point P ,  evaluated a t  % = qPe, along the normal direction n is 

Since the velocities satisfy the no-slip condition on r, (i.e. u;lpC = utlp = 0) ,  

The case of q(s) negative also yields the same expression. I n  this case, however, the 
Taylor series expansion is performed for ui, since u; is not defined beyond rM9& 
whereas u, is defined in the region of interest. 

The first variation of the objective function is obtained next. The value of the 
objective function for the new domain is given by, 

n n 

J ( r M , , )  = peu;nids+ peu;nids. 
Jr, J, 

The first variation of the objective function, SJ ,  is defined by the relation 

and can be shown to be 
J (  r M ,  &) - J ( r M )  = E S J  + O( e2), 

6J = JrI nu, n, ds + Jr0 nui ni ds, 

which is an integral expression over the entrance and exit boundaries. In  the above 
equation, variation in the objective function due to variation of the exit boundary 
does not appear since this is a second-order variation in terms of e, the perturbation 
parameter. 

The next step is the transformation of this integral from one that is over r, and 
To to one that is over r,. This is achieved through the introduction of an adjoint 
variable problem. The adjoint problem consists of a set of partial differential 
equations and boundary conditions and is derived below. Since ui n1 vanishes on the 
walls and at the centreline, (12) can be written as 

SJ = nuin,ds. I 
The inner product of the perturbation equations (6) and the adjoint variables, (z i ,  r ) ,  
integrated over the domain, and added to (13), gives 
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The above expression can be rewritten using the divergence 
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theorem as 

6J = n(ui-zi)nids+v f 

The adjoint problem has to be defined such that the domain integrals in (15) vanish 
identically. The choice of boundary conditions for these equations is made such that 
the only non-zero terms are those that are integrals over r,, the wall that is to be 
shaped. Let us define the following adjoint problem: 

Using (7), (9),  and (16), (15) can be written as 

The last term on the right-hand side of (17) vanishes since (au,/an)n, is identically 
zero on f,. The integrand of the second term on the right-hand side of (17) is 

This integrand also vanishes, because z2 = u2 = 0 and a$,/an = 0 a t  the entrance and 
exit. Notice that q52 = 0 a t  the entrance and exit, therefore q51,1 = -& = 0 at r, and 
ro. Hence (17) is reduced to 

6J = v JrM p(s) (2) (!!) ds. 

In the above equation, the integration is over the boundary that is to be shaped. We 
can choose p(s)  as 

p(s) = w ( s )  - - (2)(2) 
since that would ensure a positive change in the objective function, J ,  for a 
sufficiently small non-negative weighting function? w ( s ) .  The function p(s) provides 
the boundary movement for a positive change in J .  To evaluate p(s) we need to solve 
the direct problem (i.e. Navier-Stokes equations) given by ( 1 )  and (2), and the 
adjoint problem in z, given by (16). Note that the optimality condition is satisfied 
when either the shear stress, au,/an, or the adjoint shear stress, az,/an, on the walls 
vanishes. The former criterion for optimum diffuser profiles was also pointed out by 
Chang (1976). 

It will be shown that the above formulation is equivalent to the earlier work of 
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Glowinski & Pironneau (1975). By a change of variable, the adjoint problem can be 
transformed into the following form : 

(20 ) 
on in r, 

w. . = o  
8 ,  a 

vwi, j j  + uj Wi, j - wj uj, i - Q ,  i = - uj ui, j in 

wi = 0 

where 2wi = (z2-ui) and 2q = (r-p*+&:-ujzj) .  The first variation of the 
objective function then becomes 

The form of the adjoint variable problem defined by (20) is identical to  that derived 
by Glowinski & Pironneau (1975). Either one of the above adjoint problems can be 
solved numerically to obtain the next shape. However upon examination of (20), it 
becomes evident that  the term may lead to  a numerically unstable scheme. 
This is because the approach to steady state would be attained via an iterative ‘time 
evolution ’-like scheme that would then be of the form dw/dt = w(const) + . . . . This 
form is likely to  result in the exponential growth of the inevitable roundoff and 
truncation errors present at any iterative step. Also the presence of the 
inhomogeneous term, -u,ui,,, in the above equations may lead to a linear growth of 
the roundoff and truncation errors in the numerical computations. 

It is expected that these numerical difficulties will be absent in the ( x i , r )  
formulation of the adjoint variable problem obtained in this paper and given by (16). 
Hence this is th.: set of equations for which the algorithm for the numerical solution 
of the adjoint problem is developed. 

As pointed out by Pironneau (1974), the adjoint equations do not seem to arise 
from any identifiable physical phenomenon. It is however possible to  demonstrate 
that the adjoint variable problem is associated with a certain artificially constructed 
flow. A change of variables leads to the following form: 

(22) 

where z; = -za,u; = -ui, and r’ = - r .  The first equation in (22) is identical to  the 
continuity equation. Compare the second equation in (22) with the Navier-Stokes 
equation written here in a slightly different form: 

I z;,i =o in 52, 
in 52, 

Z; = U; = -ui on 
vz;, j j  - ui (z j ,  + zi, i )  - r:, = 0 

vui,jj-uj(ut,j + U j , i )  -@, 1 = 0, (23) 
where ji = p*-&E. Observe that the problem in the adjoint variable z; is analogous 
to  the Navier-Stokes problem in the variable ui with the following exception: the 
convective velocities in the adjoint problem are specified, rendering the problem 
linear, and are obtained from the direct problem. These convective velocities, u;, are 
identical in magnitude but opposite in direction to those of the ‘direct ’ problem. The 
boundary conditions for the adjoint variables are z; = -ui on f. Hence on the walls 
they imply a no-slip condition as in the direct problem. But a t  the inflow and outflow 
boundaries, ‘adjoint ’ flow is found entering a t  the domain exit r, and leaving at the 
domain entrance r,, thus suggesting an ‘adjoint’ flow in the direction opposite to 
that of the actual flow. 

The above interpretation of the adjoint variable problem will be useful in 
constructing a modified problem whose solution will provide numerical values, albeit 

13 FLM 237 
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approximate, for the shear stress, aui/an, and the adjoint shear stress, az,/an, in (19). 
It is found that a shape optimization algorithm that obtains its boundary movement 
from these approximate numerical solutions does indeed lead to diffuser shapes that 
satisfy the optimality condition. 

4. Numerical aspects 
The theoretical results obtained above are not limited to diffusers alone but are in 

fact valid for the optimal design of any internal flow component with boundary 
conditions in (2) and the objective function of (3). With these same boundary 
conditions and objective function the analysis can be extended to three-dimensional 
flows as well leading to  a result similar to that in (19). The above analysis requires 
both the inflow and the outflow boundary condition to be of the Dirichlet type. While 
Dirichlet-type conditions are likely to be known at  inflow, the same is not true in 
practice a t  outflow, except under special circumstances. For example for finite-sized 
ducts one would be limited to the case of fully developed flow throughout the duct, 
leading to a constant-area duct, not a geometry of particular interest here. For ducts 
and channels of varying cross-section where fully developed flow may exist at the 
entrance but not a t  the exit, one would require a downstream extension long enough 
to permit the establishment of fully developed flow. The length of such a downstream 
extension is not known a priori and may be so large as to render a numerical 
approach intractable. On the other hand if the length of the component is truncated 
to preclude established flow a t  the exit, a priori knowledge of Dirichlet conditions at 
the exit is impossible. Even if such a downstream Dirichlet condition were available, 
Kreiss & Lorenz (1989) remark that Neumann conditions a t  outflow lead to a 
‘smoother’ solution. Such a solution would then be more readily amenable to 
numerical treatment. Hirsch (1990) also suggests the use of Neumann-type outflow 
conditions provided one can ensure that there is no flow reversal anywhere on the 
outflow boundary. Thus i t  would be desirable to carry out the same analysis as above 
but replacing the outflow Dirichlet conditions with the less restrictive Neumann 
conditions. We failed to derive the adjoint problem for this choice however because 
the domain integrals in (15) do not drop out as they do in the present analysis. It is 
therefore instructive to determine whether the theoretical result with Dirichlet 
outflow conditions continues to hold even if the direct as well as the adjoint solutions 
are carried out with Neumann-type outflow conditions instead. Lacking formal 
proof, we resort to a posteriori justification of this postulate, a discussion of which 
appears in $ 5  along with the results. Finally it is shown that the computed ‘optimal’ 
shapes do indeed satisfy the optimality condition that follows from (18). 

4.1. Boundary Conditions for Navier-Stokes equations 

A parallel flow assumption a t  the upstream boundary implies Dirichlet boundary 
conditions for both the velocity components. Instead, a computationally desirable 
Neumann condition for the transverse velocity component (i3uZ/i3n = 0 on r,) is 
substituted while retaining a Dirichlet condition for the streamwise component. A 
parabolic profile corresponding to a fully developed laminar flow is specified for this 
component. A t  the downstream boundary the parallel flow assumption is replaced 
with computationally desirable Neumann conditions for both the velocity com- 
ponents (au,/an = au,/an = 0 on r0). Similar approximations will be made in the 
solution of the adjoint variable problem, keeping in mind the reversal of the role of 
entrance and exit boundaries. At the solid wall, a boundary whose profile is to  be 
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determined, a no-slip condition is enforced. At the diffuser centreline the usual 
symmetry conditions are used since the flow is assumed to be symmetric. The 
complete set of velocity boundary conditions utilized in obtaining the numerical 
solution to the direct problem is therefore given by 

au, = 0 on r,, 
an 

I au, -- - 0  on ro ( i=  1,2), 
an 

I ui = 0 on r, (i = 1,2), 

% = o  on r,, 
an 

(24) 

u2 = O  on r,. I 
At the entrance, exit, and wall, pressure has been extrapolated from within the 
domain by assuming that the second derivative of the pressure vanishes on the 
domain boundary. At the centreline a symmetry condition is imposed in the 
numerical scheme for the pressure. 

4.2, Boundary conditions for adjoint equations 
The roles of entrance and exit are reversed for the adjoint equations. Therefore, a t  
the exit boundary a Dirichlet-type condition is used only for the streamwise 
component of the co-state vector. Therefore we set z, = u1 on ro, with u, taken from 
the solution of the Navier-Stokes equations. For the remaining component z2 of the 
co-state vector a t  the exit and for both components of the co-state vector a t  the 
entrance, Neumann conditions are employed instead. At the wall where all velocity 
components vanish and, therefore, z, the co-state vector that is analogous to  the 
velocity is set to zero. The adjoint variable, r * ,  is analogous to the pressure term in 
the Navier-Stokes equations and hence no analytical boundary condition is available 
for this variable. However, a computational boundary condition is implemented for 
this variable. The value of r* is extrapolated to the boundary from values at interior 
points assuming that the streamwise second derivative vanishes a t  the boundary. 
This is done at all boundaries except a t  the centreline where a symmetry condition 
is enforced. Therefore the numerical solution to  the adjoint problem is obtained for 
the following set of boundary conditions : 

I -- a ' * - ~  on r, ( i =  i , 2 ) ,  
an 

z1 = u, on ro, 
- = O  on ro, 
an 

I 

I xi  = 0 on r, (i = 1,2), 

I aZ 1- - 0  on r,, 
an 

z 2 =  0 on r,. 
13-2 
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5. Numerical solvers 
5.1. Navier-Stokes equations solver 

The primitive variable form of the incompressiblc steady Navier-Stokes equations is 
solved using a finite volume formulation. One of the main difficulties associated with 
the solution of the Navier-Stokes equations in the velocity-pressure formulation is 
the imposition of continuity, which must be satisfied a t  all times. This does not 
permit the use of a simple explicit method that avoids solution of an algebraic system 
of equations a t  each time step. If only steady-state solutions are of interest, Chorin 
(1967) has shown that this difficulty can be overcome by use of an artificial 
compressibility method. In  this formulation, the continuity equation is modified 
using the time derivative of the pressure term. Together with the unsteady 
momentum equations, this forms a hyperbolic-parabolic type of time-dependent 
system of equations. The steady-state solution of the Navier-Stokes equations is 
then obtained as the large-time solution of the unst,eady momentum equations with 
the perturbed divergence equation. These unsteady equations are 

where /3 is analogous to the speed of sound. Note that these equations do not 
represent any transient physical phenomenon and hence the transient solution has no 
physical meaning until steady state is attained. This is indicated by the vanishing of 
the time-derivative terms in the numerical solution. 

The equations are normalized using the velocity and length scales V and W, defined 
earlier. In  addition time and pressure are normalized using the ratio W,/V and p P  
respectively. The Reynolds number of the flow through the diffuser is then given by 
Re = (VW,)/u.  

The equations are discretized in space using a finite-volume formulation. The 
spatial discretization is performed on the conservative form of the governing 
equations using a central-difference scheme. The physical domain is divided using a 
computational grid consisting of nearly orthogonal cells. For the cells in the interior 
of the domain, the dependent variables are evaluated at  the cell centre. For the cells 
on the domain boundary, the dependent variables are evaluated at  the cell face 
adjoining the boundary. The main advantage of the finite-volume formulation is that 
an irregular physical domain is mapped onto a regular computational domain. 

An explicit one-step multistage Runge-Kutta stepping scheme is used for 
integration in time. While implicit scheme have less restrictive stability require- 
ments, explicit scheme are easier to code and vectorize. The use of an explicit 
Runge-Kutta method as a time-stepping scheme for the solution of the compressible 
Euler equations has become popular following the work of Jameson, Schmidt & 
Turkel (1981) and Rizzi & Eriksson (1984). This approach has been extended to the 
compressible Navier-Stokes equations by Swanson & Turkel (1985) and Vatsa 
(1986). Further extensions to incompressible flow have been made by Rizzi & 
Eriksson (1985) and to incompressible turbulent flow by Sung (1987). 

Use of a Runge-Kutta method relaxes the severe time-step restriction of the 
conventional explicit methods by enlarging the stability region. Since transient 
behaviour is not an issue and a larger time step is desirable, a four-stage Runge-Kutta 
scheme with first-order accuracy in time and a relatively high Courant-Friedrichs- 
Lewy number has been chosen. In order to improve the convergence rate, 
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2.2 

1.0 4 
0 0.1 0.2 

xl(D Re) 

FIGURE 2. Streamwise velocity development along the duct centreline: (a )  Re = 32, (b)  Re = 100 
and (c) Re = 100 (shorter computational domain). -, Computations; 0,  Goldstein & Kreid 
(1967). 

a local time step is computed for each cell at each elapsed time level. These time steps 
have been estimated from a stability analysis of the algorithm. A fourth-order linear 
artificial dissipation term is introduced to damp the high-frequency oscillations 
associated with the so-called sawtooth or plus-minus waves, i.e. waves associated 
with the shortest wavelengths. Implicit residual smoothing is performed a t  each 
iteration to enhance the stability region of the technique. 

5.2. Test solutions of the Navier-Stokes solver 
To establish some measure of confidence in the numerical solution of the 
Navier-Stokes equations the three-dimensional version of the code was used to 
compute entry flow in a straight duct of square cross-section a t  Re = 32 and 100. The 
Reynolds number is based on the average velocity through the duct and the duct 
width. The calculations are carried out in a single quadrant of the duct, owing to 
symmetry. 
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Y 
I I I I 

0 0.02 0.04 0.06 0.08 
x / D  Re 

FIGURE 3. Variation of the average pressure with x/(D Re) at Re = 100. -, Computations ; 
0 ,  Beavers et al. (1970). 

The number of grid points in the streamwise, i.e. x, direction varies from 17 at 
Re = 32 to 52 at Re = 100 with a 9 x 9 grid in the other, i.e. y- and z-directions. The grid 
spacing is somewhat non-uniform in the x-direction close to the duct entrance but is 
uniform in the other two directions. At the entrance a plug flow profile is specified 
for the streamwise velocity component and the streamwise derivative of the 
remaining velocity components is set to zero. At the exit the streamwise derivative 
is assumed to vanish for all three velocity components. The usual no-slip condition on 
the wall and symmetry conditions a t  the two centreplanes are specified. 

Figures 2 ( a ) ,  2 (b)  and 2 (c) show the axial development of the computed as well as 
the measured normalized streamwise velocity component a t  the duct centreline. 
Figures 2(a) and 2(b) show the calculations a t  Reynolds numbers of 32 and 100 
respectively, whereas figure 2 (c) shows the calculation at a Reynolds number of 100 
but for a computational domain shorter than that used for figure 2(b). The 
experimental data were obtained from the laser Doppler velocimetry measurements 
of Goldstein & Kreid (1967) for Reynolds numbers ranging between 69 and 387. As 
seen from these figures, the calculations agree with the experimental data. The 
shorter-domain results shown in figure 2(c) do not differ from the results in figure 
2 (b), indicating the efficacy of Neumann-type downstream boundary conditions in 
minimizing the upstream influence on the flow. In figure 3 the computed pressure 
averaged over the cross-sectional area is compared with the experimental data of 
Beavers, Sparrow & Magnuson (1970) a t  Re = LOO. Once again the agreement 
between calculations and the experimental data is found satisfactory. The above 
test-case results provide a measure of confidence in the ability of the code to 
accurately model the boundary-layer development in the entrance region of the duct. 

5.3.  Mesh generation 
The computational grid is generated by solving a set of elliptic partial differential 
equations similar to those suggested by Thompson, Thames & Mastin (1974). They 
begin with the following coordinate mapping : 
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FIGURE 4. A typical computational grid for a plane diffuser obtained using the grid generation 
program. Grid size is 61 x 31. This was the domain for the optimum diffuser at Re = 200 and 
L/W,  = 3. 

In  this paper, the above equations are simplified by assuming that a x y and P x 0, 
and instead the following equations are solved : 

in the computational domain, 1 < [ < Em,, and 1 < 7 < qmax, with Dirichlet 
boundary conditions. 

The equations are discretized using finite differences. The set of algebraic 
equations thus obtained is solved by successive over-relaxation. The grids generated 
using this method have been found to  be satisfactory for the purposes of this paper. 
A typical grid is shown in figure 4. Grids generated by this method were nearly 
orthogonal and the cell dimensions in each direction are approximately equal. 

5.4. Adjoint equation solver 

The solution to  the adjoint set of equations is obtained as the steady-state solution 
to the following set of equations: 

where r* = r-iz,z,. A nonlinear term i ( x , z , ) , ,  is introduced in the above equation 
to enhance the rate of convergence. The utility of this term was established by means 
of preliminary calculations performed on a straight-duct geometry where an exact 
solution of the Navier-Stokes solution is known for fully developed laminar flow. 

The equations are normalized following a procedure similar to that utilized for the 
Navier-Stokes equations. The non-dimensional form of (29) is identical to the 
dimensional one with the exception of the first term on the right-hand side where the 
kinematic viscosity, v, is replaced by the reciprocal of the Reynolds number. 

The numerical algorithm for the solution of the adjoint set of equations is 
essentially similar to the algorithm described for the Navier-Stokes equations. Some 
subtle but important differences do exist since the equations solved are after all not 
the same. A brief discussion of the numerical algorithm is presented here, since this 
solution, to  the best of our knowledge, represents the first successful numerical 
solution of the adjoint set of equations in the absence of either a thin boundary layer 
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or a Stokes flow assumption. Spatial discretization is carried out by a centred- 
different finite-volume formulation. The term ~ ~ ( z ~ , ~  + zi,{) on the right-hand side of 
(29) is not in a divergence form. In  the treatment of this term the velocities uj, which 
have already been obtained by the Navier-Stokes solver, are treated as known 
quantities and are assumed constant inside each cell. Hence the volume integral over 
the cell is performed by applying the divergence theorem to the remaining part of 
this term, i.c. ( q j + z j q i ) .  

The other terms in (29) are treated in the same fashion as the finite-volume 
formulation of the Navicr-Stokes equations. Once again a fourth-order linear 
artificial dissipation term is introduced to damp high-frequency oscillations. Time 
integration is carried out by a Rungc-Kutta scheme with local time stepping. 
Implicit residual smoothing has also been incorporated into the scheme. The details 
and a thorough verification of the numerical schemes for both the Navier-Stokes and 
the adjoint set of equations are given by Cabuk (1991). 

5.5. Profile modification algorithm 
The principal steps of the optimization procedure are : 

( a )  choose an initial diffuser profile; 
( b )  generate a computational grid that conforms to the diffuser wall; 
(c) obtain the steady-state solution to the direct problem ; 
(d )  obtain the steady-state solution to the adjoint problem, by treating the 

required velocities as known from step (c) ; 
( e )  compute aui/an and azi/an from the solutions in stcps (c) and ( d )  respectively. 

Choose a non-negative weighting function w ( s )  and hence obtain p(s)  from (19); 
(f) move nodes on the diffuser wall to be profiled along the outer normal direction 

by p(s). The curve connecting the nodes after this movement represents the new 
diffuser profile ; 

(9)  go to step ( b )  unless the change in diffuser pressure rise obtained from step ( c )  
is smaller than a desired convergence parameter. 

The iterative profile modification process is continued until the change in pressure 
rise is a small fraction of the total pressure rise. An alternative method is to continue 
the process until the value of p ( s )  evcrywhere along the wall is less than a critical 
value. 

In  step ( e ) ,  the weighting function, w ( s ) ,  is chosen to be proportional to  the 
arclength, s, along the diffuser wall measured from the diffuser entrance. This ensures 
that the entrance width is maintained constant but the exit width may vary with the 
diffuser profile. 

When shifting the diffuser wall profile to a new curve obtained from step (f some 
care must be exercised since the curve is being redefined using only a finite number 
of discretely spaced points. Some checks are performed on the location of points on 
the new curve and the following heuristic measures are adopted. (i) A means to 
ensure that boundary nodes do not conglomerate or coalesce after their movement 
to a new position so as to prevent degradation of numerical accuracy elsewhere in the 
domain whcrc points are now spaced far apart. (ii) A means to ensure that the 
appearance of small-amplitude wiggles in the new profile are damped to some extent 
so as to  prevent the growth and build-up of numerical errors in the subsequent 
calculation. 

In  ordcr to prevent the points on the wall boundary from coalescing, these points 
are moved tangentially after their prescribed normal movement so that the spacing 
between them remain approximately equal (see figure 5 ) .  In  figure 5 ,  line I ,  is parallel 
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FIGURE 5. Schematic diagram for the tangential relocation of the boundary points. 
P, = P~+B{IK~+II-IK~-II},P~ is the midpoint of P,- lP,+, .  

FIGURE 6. Schematic diagram for reduction of corner angles. 

to  Pi-, Pi+l and passes through a point P. 9 and line 1, is perpendicular to the line 1, and 
passes through the point Pc on Pi-lP,+l. In  order to maintain even spacing, Pc should 
correspond to the midpoint P, of P,-,P,+,. However, an actual curve is better 
represented by a collection of node points, if the density of the nodes increases with 
the absolute value of the curvature along the curve. I n  order to get relatively smaller 
spacing when the absolute value of the curvature is large, the point Pc is computed 
as follows. The midpoint P, of pt-,G+,, and IKi-ll and I K ~ + , ~ ,  the absolute values of 
curvatures a t  Pi-, and Pi+, respectively, are computed. Then Pc is found from 
Pc = PM+,8(I~i+11 - IKi- , l )  wherepisaweightingfactor. Pointeis  theintersection ofline 
1, and line I ,  For each node on r,, points 8 are computed first, then the pi are 
replaced by pi. This tangential relocation of the node points assures that they will not 
coalesce. Furthermore, a tangential relocation of nodes does not change the value of 
the objective function, J ,  considerably since the curve defining the relocated nodes 
is essentially the same as before relocation. 

The wall boundary points are also relocated to  damp the occurrence of wiggles in 
the new profile. Boundary points are moved as shown in figure 6, if the deviation of 
the corner angles from m was more than a pre-specified angle, in such a way as to 
ensure that this deviation would be less than or equal to the specified tolerance. The 
corner angles, ai, in figure 6 are computed for all nodes on r,. If max loli -mI is greater 
than ~ a preset threshold of $7, the corresponding point, 4, is moved to the midpoint 
of c P H .  This process is continued until max lat--nl is less than the threshold. This 
relocation procedure assures that the new profile a t  any iteration is sufficiently free 
of very sharp corners. 

6. Results and discussion 
Using the numerical solvers and the profile modification algorithm described 

above, optimum diffuser profiles have been obtained for a single diffuser length 
L/  W, = 3 at Reynolds numbers Re = 50,100,200 and 500. A sound speed, /I2, of 2 for 
the Navier-Stokes cquations and 2.5 for the adjoint equations was used a t  all Reynolds 
numbers. The calculation at Re = 200 (henceforth called the reference case) has been 
examined in particular detail to  establish issues of convergence and accuracy. 
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FIQURE 7. Profiles of a reference diffuser a t  successive iterations. The grid size is 61 x 31. 
0, Initial shape; 0, first iteration; a, fourth iteration; *, ninth iteration. 
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FIQURE 8. Effect of grid size on optimum profile of a reference diffuser: 0, 31 x 16; 0, 61 x 31 ; 
*, 121 x61.  

The reference case was first examined for convergence of the profile modification 
algorithm. For this purpose, a computational grid of 61 nodes in the x- and 31 nodes 
in the y-directions is employed, both for the Navier-Stokes and the adjoint variable 
problem. Beginning with an initial shape, the diffuser profile was obtained after each 
application of the shape modification algorithm. The initial profile and some of the 
intermediate profiles are shown in figure 7. The change in the profile shape is 
observed to be small between the fourth and the ninth iteration and the change was 
found to be insignificant after nine iterations. Hence the iterative process is stopped 
at  the ninth iteration, providing a reasonably converged optimum shape. The 
question of computational accuracy of the solvers and hence the accuracy of the 
optimum profile is addressed next. 

The precise error due to a finite grid size on the optimum profile is difficult to 
determine since the actual optimum curve is not known a priori, nor are any other 
calculations or experimental data available. However one way to estimate the effects 
of the unavoidable truncation errors in a numerical calculation is to obtain the 
optimum diffuser profile using progressively finer grids until there is no change with 
grid size. Once again the reference case of Re = 200 was examined for this purpose 
using grids of 31 x 16, 61 x 31 and finally 121 x 61. The optimum profiles obtained 
using the three grids are shown in figure 8. The results show that the difference 
between the shapes is negligibly small, providing some evidence that a t  these grids 
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FIGURE 9. Development of the streamwise velocity profile along the reference diffuser. The grid 
size is 61 x 31. (a )  z = 0.5, ( b )  5 = 1.0, (c) z = 2.0, and ( d )  z = 3.0. 

the contribution of the truncation errors may not be significant. In view of this 
observation, a grid size of 61 x 31 is found to be a suitable compromise between 
accuracy and computational work for the results presented here. 

In  an earlier section we proposed that it was computationally desirable to impose 
Neumann-type conditions at  outflow boundaries in both the NavierStokes and the 
adjoint equation solvers. To justify this postulate we need to verify whether the 
optimum shapes obtained in this fashion do indeed satisfy the optimality condition, 
i.e. vanishing shear stress on the wall, arising from the analysis. The velocity profiles 
and wall shear stress for the optimum reference diffuser are examined for this 
purpose. In figure 9, the streamwise velocity distribution across the diffuser is shown 
at  several axial positions. The slope of the velocity profile is observed to approach 
zero as the wall is approached, i.e. y = ymax of the optimum diffuser. In figure 10 the 
wall shear stress normalized by the corresponding value for a straight duct is shown 
for the optimum shape as well as at several intermediate stages of iteration. The wall 
shear stress for the optimum shape is found to be vanishingly small for all but 10 % 
of the wall at  the upstream end. The shear stress distributions at intermediate 
iterations demonstrate a monotonic decrease towards the optimum values. Closer 
examination of the shear stress for the optimum and intermediate shapes at other 
Reynolds numbers confirm the same behaviour. To eliminate the possibility that the 
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FIGURE 10. Kormalized wall shear stress at successive iterations for a reference diffuser. The 
grid size is 61 ~ 3 1 .  0, Starting shape; 0, first iteration; a, fourth iteration; *, ninth 
iteration. 
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FIQURE 1 1 .  Static pressure rise through the reference diffuser at successive iterations. The grid 
size is 61 x 31. 0, Area-averaged pressure rise; A, velocity-averaged pressure rise. 

approach to optimum is in some sense non-systematic due to the postulated 
Neumann-type outflow conditions, we examine the iterative history of the objective 
function for the reference diffuser. The velocity-averaged static pressure rise (i.e. the 
objective function defined by (3)) is shown in figure 11 a t  successive iterations of the 
shape modification process. The objective function for this modified numerical 
problem is indeed found to increase with each application of the boundary movement 
suggested by (19). The area-averaged static pressure rise through the reference 
diffuser also increases with shape modification. as seen in figure 11. These 
observations are also valid for calculations a t  other Reynolds numbers in the present 
study. The a posteriori checks performed on the numerical results hence permit us to 
place a fair degree of confidence in the validity of the numerical approach. 

In  addition to  the reference case, calculation of the optimum diffuser profile was 
carried out a t  three other Reynolds numbers, Re = 50, 100 and 500. in figure 12, 
these profiles are shown for a diffuser of L/W, = 3 for a grid of 61 x 31. At lower 
Reynolds numbers the optimum diffuser profile permits a larger ratio of exit area to 
inlet area, as one would expect higher viscous effects to support greater diffusion 
without separation. The angle a t  which thc diffuser profile departs a t  the upstream 
corner is difficult to compute accurately since the flow in that corner may not be 
accurately resolved. Nevertheless, the approximate angle decreases from 56" to 19" 
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FIGURE 12. Optimum diffuser profiles at different Reynolds numbers for LIW, = 3. Grid size is 
61 x31.  0, Re = 50; 0 ,  Re = 100; A, Re = 200; 0,  Re = 500. 
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as the Reynolds number increases from 50 to 500. For the Reynolds-number range 
in which numerical solutions are presented here, further refinement of the grid did 
not lead to any significant change in the optimum profile. This was not found to be 
true of computations a t  Reynolds numbers higher than 500. 

To evaluate the performance of the optimum diffuser, a pressure recovery 
coefficient, C,, is defined, which is the ratio of the static pressure rise of the optimum 
diffuser to  the static pressure rise for an ideal diffuser (in potential flow) with the 
same WJW, ratio as the optimum diffuser. Note that the denominator of this ratio 
is independent of the actual profile between the upstream and downstream cross- 
sections of the diffuser. Using C ,  as a parameter, the performance of the optimum 
diffuser is now compared with that of a straight-walled diffuser with the same 
WJW, ratio at several different Reynolds numbers in the laminar regime. The C ,  
values of straight diffusers are found numerically using the Navier-Stokes solver on 
the straight-walled geometry without any shape modification steps. As seen from 
figure 13, the C, values for the optimum diffusers are always higher than those for 
straight diffusers. 
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7. Conclusion 
A variational formulation of the problem of determining the profile of a plane 

diffuser (of given upstream width and length) that provides the maximum static 
pressure rise is derived. The analysis provides a set of ‘adjoint’ equations, the 
solution to which along with the solution to the ‘direct’ Navier-Stokes equations 
provide a means to compute the direction and relative magnitude of the change in 
diffuser profile that  leads to a higher pressure rise. The optimality condition, that  the 
shear stress all along the wall must vanish for the optimum diffuser, is also recovered 
from the analysis. 

It is shown that the adjoint problem may be associated with an artificially 
constructed flow. The convective velocities of this problem are identical in magnitude 
but opposite in direction to  those of the direct problem. At the inflow and outflow 
boundaries, ‘adjoint ’ flow is found entering at the domain exit ro and leaving a t  the 
domain entrance r,, thus suggesting an ‘adjoint’ flow in the direction opposite to  
that of the actual flow. This interpretation of the adjoint problem is found useful in 
constructing the numerical solution to the adjoint problem. 

The direct as well as the adjoint set of partial differential equations are obtained 
for Dirichlet-type inflow and outflow conditions. It is postulated that the adjoint set 
of equations continue to hold even if the computationally inconvenient Dirichlet- 
type outflow boundary condition is replaced by Neumann-type conditions. Results 
obtained in this fashion are examined to  provide a posteriori justification of this 
postulate. It is shown that numerical solutions obtained in this fashion do satisfy the 
optimality condition. Future effort should address the inadequate treatment of the 
outflow boundary condition in obtaining the adjoint problem. 

The analysis in its present form can be extended to three-dimensional flow to 
obtain a shape modification formula similar to that in (18). It however remains to  be 
examined whether the numerical approach continues to hold in more complex 
geometries where the flow is necessarily three-dimensional, perhaps due to an 
associated non-negligible secondary flow. 
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